We present Human to Humanoid (H2O), a reinforcement learning (RL) based framework that enables real-time whole-body teleoperation of a full-sized humanoid robot with only an RGB camera. To create a large-scale retargeted motion dataset of human movements for humanoid robots, we propose a scalable ''sim-to-data" process to filter and pick feasible motions using a privileged motion imitator. Afterwards, we train a robust real-time humanoid motion imitator in simulation using these refined motions and transfer it to the real humanoid robot in a zero-shot manner. We successfully achieve teleoperation of dynamic whole-body motions in real-world scenarios, including walking, back jumping, kicking, turning, waving, pushing, boxing, etc. To the best of our knowledge, this is the first demonstration to achieve learning-based real-time whole-body humanoid teleoperation.
Tairan He*, Zhengyi Luo*, Xialin He*, Wenli Xiao, Chong Zhang, Weinan Zhang, Kris Kitani, Changliu Liu, Guanya Shi PDF | ArXiv | Video | Project Page |
@article{he2024learning,
title={Learning human-to-humanoid real-time whole-body teleoperation},
author={He, Tairan and Luo, Zhengyi and Xiao, Wenli and Zhang, Chong and Kitani, Kris and Liu, Changliu and Shi, Guanya},
journal={arXiv preprint arXiv:2403.04436},
year={2024}
}